The need to solve larger-scale and highly heterogeneous reactor problems is urgent nowadays; different computational codes are being developed to meet this demand. Method of characteristics unstructured meshing (MOCUM) is a transport theory code based on the method of characteristic as the flux solver with an advanced general geometry processor. The objective of this research was to use the MOCUM program to solve the whole core, highly heterogeneous pressurized water reactor (PWR) benchmark problem, to determine its efficiency in solving complicated benchmarks, the large scale full-core PWR benchmark problem presented in this work was modeled for high heterogeneity at the core and assembly level, and depicts a realistic reactor design. The design of the core is a 15×15 assembly arrangement and each assembly is based on the C5G7 assembly design, i.e, 17×17 fuel pins. The problem was simplified for faster computation time by using the 1/4 symmetry of the core. MATLAB is used for the visualization of the neutron flux for each group, and the fission rate. MOCUM result shows good agreement with monte carlo N-particles (MCNP6) solution with a -0.025% difference in eigenvalue (keff). The pin and assembly power calculated with MOCUM, shows good agreement with that of MCNP6; the maximum relative difference for pin and assembly power was -2.53% and -1.79% respectively. The power profiles from these two computational codes were compared and used to validate the MOCUM solutions.
Language
eng
File Type
pdf
File Size
2842240 bytes
Date Available
May, 22nd 2017
LC Number
T378.24 O3p
Rights
The right to download or print any of the pages of this thesis (Material) is granted by the copyright owner only for personal or classroom use. The author retains all proprietary rights, including copyright ownership. Any reproduction or editing or other use of this Material by any means requires the express written permission of the copyright owner. Except as provided above, or any use beyond what is allowed by fair use (Title 17 Section 107 U.S.C.), you may not reproduce, republish, post, transmit or distribute any Material from this web site in any physical or digital form without the permission of the copyright owner of the Material. Inquiries regarding any further use of these materials should be addressed to Administration, Jernigan Library, Texas A&M University-Kingsville, 700 University Blvd. Kingsville, Texas 78363-8202, (361)593-3416.