The research study focused on synthesis, characterization and applications of Fe3O4 coreshelled magnetic nanomaterials. This Fe3O4 magnetic nanomaterials will be prepared by using cost effective and convenient wet-chemistry method and will encapsulated using aqueous extracts of medicinal natural products. Three natural products namely Symplocos racemosa, Picrorhiza kurroa and Butea monosperma used to encapsulate Fe3O4 MNMs due to their scope to reduce the risk of cancer, improves health, increase energy and enhance the immunity These three medicinal natural products are synthesize by using water as a solvents to derive its active constituents, which will further used to functionalize the magnetic nanomaterials. The magnetic nanoparticles characterization studies performed using X-ray powder diffraction, Scanning electron microscope, Transmission electron microscope, Ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR) and Magnetic property. Fe3O4 magnetic nanomaterials biological activity was tested on Gram -negative bacteria (Escherichia coli). The results pointed out that, due to the adequate coating of Fe3O4 (Iron Oxide) core by the medicinal chemical constituents from the natural products, the absorption of Fe3O4 magnetic nanomaterials was not detected in the UV-VIS Spectroscopy. TEM images showed that Fe3O4 coated with natural product extract in core-shelled structure, and the size of the particle ranges from 6 nm to 10 nm. Fourier Transform Infrared spectroscopy (FT-IR) was performed to determine the nature of chemicals present in natural extracts and functionalized Fe3O4 magnetic nanomaterials. The model of wound healing mimic and antibacterial activity performed on gramnegative (Escherichia coli), indicating steady increasing cell growth after adding Fe3O4 MNMs. It was also found that MNMs synthesized at high temperatures shows less wound healing activity, when compared to MNMs prepared at room temperature due to formation of clusters at high temperatures.
Language
eng
File Type
pdf
File Size
12716189 bytes
Date Available
January 9, 2018
LC Number
T378.24 K837s
Rights
The right to download or print any of the pages of this thesis (Material) is granted by the copyright owner only for personal or classroom use. The author retains all proprietary rights, including copyright ownership. Any reproduction or editing or other use of this Material by any means requires the express written permission of the copyright owner. Except as provided above, or any use beyond what is allowed by fair use (Title 17 Section 107 U.S.C.), you may not reproduce, republish, post, transmit or distribute any Material from this web site in any physical or digital form without the permission of the copyright owner of the Material. Inquiries regarding any further use of these materials should be addressed to Administration, Jernigan Library, Texas A&M University-Kingsville, 700 University Blvd. Kingsville, Texas 78363-8202, (361)593-3416.